Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Crit Rev Oncog ; 29(3): 33-65, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38683153

RESUMO

Deep learning (DL) is poised to redefine the way medical images are processed and analyzed. Convolutional neural networks (CNNs), a specific type of DL architecture, are exceptional for high-throughput processing, allowing for the effective extraction of relevant diagnostic patterns from large volumes of complex visual data. This technology has garnered substantial interest in the field of neuro-oncology as a promising tool to enhance medical imaging throughput and analysis. A multitude of methods harnessing MRI-based CNNs have been proposed for brain tumor segmentation, classification, and prognosis prediction. They are often applied to gliomas, the most common primary brain cancer, to classify subtypes with the goal of guiding therapy decisions. Additionally, the difficulty of repeating brain biopsies to evaluate treatment response in the setting of often confusing imaging findings provides a unique niche for CNNs to help distinguish the treatment response to gliomas. For example, glioblastoma, the most aggressive type of brain cancer, can grow due to poor treatment response, can appear to grow acutely due to treatment-related inflammation as the tumor dies (pseudo-progression), or falsely appear to be regrowing after treatment as a result of brain damage from radiation (radiation necrosis). CNNs are being applied to separate this diagnostic dilemma. This review provides a detailed synthesis of recent DL methods and applications for intratumor segmentation, glioma classification, and prognosis prediction. Furthermore, this review discusses the future direction of MRI-based CNN in the field of neuro-oncology and challenges in model interpretability, data availability, and computation efficiency.


Assuntos
Neoplasias Encefálicas , Glioma , Redes Neurais de Computação , Humanos , Glioma/diagnóstico por imagem , Glioma/terapia , Glioma/patologia , Glioma/diagnóstico , Prognóstico , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Aprendizado Profundo , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador
2.
Phys Med ; 119: 103316, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340693

RESUMO

PURPOSE: MRI-linear accelerator (MRI-Linac) systems allow for daily tracking of MRI changes during radiotherapy (RT). Since one common MRI-Linac operates at 0.35 T, there are efforts towards developing protocols at that field strength. In this study we demonstrate the implementation of a post-contrast 3DT1-weighted (3D-T1w) and dynamic contrast-enhancement (DCE) protocol to assess glioblastoma response to RT using a 0.35 T MRI-Linac. METHODS AND MATERIALS: The protocol implemented was used to acquire 3D-T1w and DCE data from a flow phantom and two patients with glioblastoma (a responder and a non-responder) who underwent RT on a 0.35 T MRI-Linac. The detection of post-contrast-enhanced volumes was evaluated by comparing the 3DT1w images from the 0.35 T MRI-Linac to images obtained using a 3 T scanner. The DCE data were tested temporally and spatially using data from a flow phantom and patients. Ktrans maps were derived from DCE at three time points (a week before treatment-Pre RT, four weeks through treatment-Mid RT, and three weeks after treatment-Post RT) and were validated with patients' treatment outcomes. RESULTS: The 3D-T1w contrast-enhancement volumes were visually and volumetrically similar between 0.35 T MRI-Linac and 3 T. DCE images showed temporal stability, and associated Ktrans maps were consistent with patient response to treatment. On average, Ktrans values showed a 54 % decrease and 8.6 % increase for a responder and non-responder respectively when Pre RT and Mid RT images were compared. CONCLUSION: Our findings support the feasibility of obtaining post-contrast 3D-T1w and DCE data from patients with glioblastoma using a 0.35 T MRI-Linac system.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/radioterapia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Meios de Contraste , Imageamento por Ressonância Magnética/métodos , Perfusão
3.
Am J Clin Pathol ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38412318

RESUMO

OBJECTIVES: There are 2 grading approaches to radical prostatectomy (RP) in multifocal cancer: Grade Group (GG) and percentage of Gleason pattern 4 (GP4%). We investigated whether RP GG and GP4% generated by global vs individual tumor grading correlate differently with biochemical recurrence. METHODS: We reviewed 531 RP specimens with GG2 or GG3 cancer. Each tumor was scored separately with assessment of tumor volume and GP4%. Global grade and GP4% were assigned by combining Gleason pattern 3 and 4 volumes for all tumors. Correlation of GG and GP4% generated by 2 methods with biochemical recurrence was assessed by Cox proportional hazard regression and receiver operating characteristic curves, with optimism adjustment using a bootstrap analysis. RESULTS: Median age was 63 (range, 42-79) years. Median prostate-specific antigen was 6.3 (range, 0.3-62.9) ng/mL. In total, the highest-grade tumor in 371 (36.9%) men was GG2 and in 160 (30.1%) men was GG3. Global grading was downgraded from GG3 to GG2 in 37 of 121 (30.6%) specimens with multifocal disease, and 145 of 404 (35.9%) specimens had GP4% decreased by at least 10%. Ninety-eight men experienced biochemical recurrence within a median of 13 (range, 3-119) months. Men without biochemical recurrence were followed up for a median of 47 (range, 12-205) months. Grade Group, GP4%, and margin status correlated with the risk of biochemical recurrence using highest-grade tumor and global grading, but the degrees of these correlations varied and were statistically significantly different between the 2 grading approaches. CONCLUSIONS: Grade Group, GP4%, and margin status derived by global vs individual tumor grading predict postoperative biochemical recurrence statistically significantly differently. This difference has important implications if results derived from cohorts graded using different methods are compared.

4.
NMR Biomed ; 37(3): e5069, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37990759

RESUMO

Quantitative T2-weighted MRI (T2W) interpretation is impeded by the variability of acquisition-related features, such as field strength, coil type, signal amplification, and pulse sequence parameters. The main purpose of this work is to develop an automated method for prostate T2W intensity normalization. The procedure includes the following: (i) a deep learning-based network utilizing MASK R-CNN for automatic segmentation of three reference tissues: gluteus maximus muscle, femur, and bladder; (ii) fitting a spline function between average intensities in these structures and reference values; and (iii) using the function to transform all T2W intensities. The T2W distributions in the prostate cancer regions of interest (ROIs) and normal appearing prostate tissue (NAT) were compared before and after normalization using Student's t-test. The ROIs' T2W associations with the Gleason Score (GS), Decipher genomic score, and a three-tier prostate cancer risk were evaluated with Spearman's correlation coefficient (rS ). T2W differences in indolent and aggressive prostate cancer lesions were also assessed. The MASK R-CNN was trained with manual contours from 32 patients. The normalization procedure was applied to an independent MRI dataset from 83 patients. T2W differences between ROIs and NAT significantly increased after normalization. T2W intensities in 231 biopsy ROIs were significantly negatively correlated with GS (rS = -0.21, p = 0.001), Decipher (rS = -0.193, p = 0.003), and three-tier risk (rS = -0.235, p < 0.001). The average T2W intensities in the aggressive ROIs were significantly lower than in the indolent ROIs after normalization. In conclusion, the automated triple-reference tissue normalization method significantly improved the discrimination between prostate cancer and normal prostate tissue. In addition, the normalized T2W intensities of cancer exhibited a significant association with tumor aggressiveness. By improving the quantitative utilization of the T2W in the assessment of prostate cancer on MRI, the new normalization method represents an important advance over clinical protocols that do not include sequences for the measurement of T2 relaxation times.


Assuntos
Imagem de Difusão por Ressonância Magnética , Neoplasias da Próstata , Masculino , Humanos , Imagem de Difusão por Ressonância Magnética/métodos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Imageamento por Ressonância Magnética/métodos , Biópsia
5.
Cancers (Basel) ; 15(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37958414

RESUMO

The utilization of multi-parametric MRI (mpMRI) in clinical decisions regarding prostate cancer patients' management has recently increased. After biopsy, clinicians can assess risk using National Comprehensive Cancer Network (NCCN) risk stratification schema and commercially available genomic classifiers, such as Decipher. We built radiomics-based models to predict lesions/patients at low risk prior to biopsy based on an established three-tier clinical-genomic classification system. Radiomic features were extracted from regions of positive biopsies and Normally Appearing Tissues (NAT) on T2-weighted and Diffusion-weighted Imaging. Using only clinical information available prior to biopsy, five models for predicting low-risk lesions/patients were evaluated, based on: 1: Clinical variables; 2: Lesion-based radiomic features; 3: Lesion and NAT radiomics; 4: Clinical and lesion-based radiomics; and 5: Clinical, lesion and NAT radiomic features. Eighty-three mpMRI exams from 78 men were analyzed. Models 1 and 2 performed similarly (Area under the receiver operating characteristic curve were 0.835 and 0.838, respectively), but radiomics significantly improved the lesion-based performance of the model in a subset analysis of patients with a negative Digital Rectal Exam (DRE). Adding normal tissue radiomics significantly improved the performance in all cases. Similar patterns were observed on patient-level models. To the best of our knowledge, this is the first study to demonstrate that machine learning radiomics-based models can predict patients' risk using combined clinical-genomic classification.

6.
Cancers (Basel) ; 15(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37958415

RESUMO

Glioblastoma changes during chemoradiotherapy are inferred from high-field MRI before and after treatment but are rarely investigated during radiotherapy. The purpose of this study was to develop a deep learning network to automatically segment glioblastoma tumors on daily treatment set-up scans from the first glioblastoma patients treated on MRI-linac. Glioblastoma patients were prospectively imaged daily during chemoradiotherapy on 0.35T MRI-linac. Tumor and edema (tumor lesion) and resection cavity kinetics throughout the treatment were manually segmented on these daily MRI. Utilizing a convolutional neural network, an automatic segmentation deep learning network was built. A nine-fold cross-validation schema was used to train the network using 80:10:10 for training, validation, and testing. Thirty-six glioblastoma patients were imaged pre-treatment and 30 times during radiotherapy (n = 31 volumes, total of 930 MRIs). The average tumor lesion and resection cavity volumes were 94.56 ± 64.68 cc and 72.44 ± 35.08 cc, respectively. The average Dice similarity coefficient between manual and auto-segmentation for tumor lesion and resection cavity across all patients was 0.67 and 0.84, respectively. This is the first brain lesion segmentation network developed for MRI-linac. The network performed comparably to the only other published network for auto-segmentation of post-operative glioblastoma lesions. Segmented volumes can be utilized for adaptive radiotherapy and propagated across multiple MRI contrasts to create a prognostic model for glioblastoma based on multiparametric MRI.

7.
ArXiv ; 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37131875

RESUMO

Purpose: MRI-linear accelerator (MRI-Linac) systems allow for daily tracking of MRI changes during radiotherapy (RT). Since one common MRI-Linac operates at 0.35T, there are efforts towards developing protocols at that field strength. In this study we demonstrate the implementation of a post-contrast 3DT1-weighted (3DT1w) and dynamic contrast enhancement (DCE) protocol to assess glioblastoma response to RT using a 0.35T MRI-Linac. Methods and materials: The protocol implemented was used to acquire 3DT1w and DCE data from a flow phantom and two patients with glioblastoma (a responder and a non-responder) who underwent RT on a 0.35T-MRI-Linac. The detection of post-contrast enhanced volumes was evaluated by comparing the 3DT1w images from the 0.35T-MRI-Linac to images obtained using a 3T-standalone scanner. The DCE data were tested temporally and spatially using data from the flow phantom and patients. Ktrans maps were derived from DCE at three time points (a week before treatment-Pre RT, four weeks through treatment-Mid RT, and three weeks after treatment-Post RT) and were validated with patients' treatment outcomes. Results: The 3D-T1 contrast enhancement volumes were visually and volumetrically similar (±0.6-3.6%) between 0.35T MRI-Linac and 3T. DCE images showed temporal stability, and associated Ktrans maps were consistent with patient response to treatment. On average, Ktrans values showed a 54% decrease and 8.6% increase for a responder and non-responder respectively when Pre RT and Mid RT images were compared. Conclusion: Our findings support the feasibility of obtaining post-contrast 3DT1w and DCE data from patients with glioblastoma using a 0.35T MRI-Linac system.

8.
Cancers (Basel) ; 15(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37190264

RESUMO

Histopathological classification in prostate cancer remains a challenge with high dependence on the expert practitioner. We develop a deep learning (DL) model to identify the most prominent Gleason pattern in a highly curated data cohort and validate it on an independent dataset. The histology images are partitioned in tiles (14,509) and are curated by an expert to identify individual glandular structures with assigned primary Gleason pattern grades. We use transfer learning and fine-tuning approaches to compare several deep neural network architectures that are trained on a corpus of camera images (ImageNet) and tuned with histology examples to be context appropriate for histopathological discrimination with small samples. In our study, the best DL network is able to discriminate cancer grade (GS3/4) from benign with an accuracy of 91%, F1-score of 0.91 and AUC 0.96 in a baseline test (52 patients), while the cancer grade discrimination of the GS3 from GS4 had an accuracy of 68% and AUC of 0.71 (40 patients).

9.
medRxiv ; 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37205576

RESUMO

Background: Patients with localized prostate cancer have historically been assigned to clinical risk groups based on local disease extent, serum prostate specific antigen (PSA), and tumor grade. Clinical risk grouping is used to determine the intensity of treatment with external beam radiotherapy (EBRT) and androgen deprivation therapy (ADT), yet a substantial proportion of patients with intermediate and high risk localized prostate cancer will develop biochemical recurrence (BCR) and require salvage therapy. Prospective identification of patients destined to experience BCR would allow treatment intensification or selection of alternative therapeutic strategies. Methods: Twenty-nine individuals with intermediate or high risk prostate cancer were prospectively recruited to a clinical trial designed to profile the molecular and imaging features of prostate cancer in patients undergoing EBRT and ADT. Whole transcriptome cDNA microarray and whole exome sequencing were performed on pretreatment targeted biopsy of prostate tumors (n=60). All patients underwent pretreatment and 6-month post EBRT multiparametric MRI (mpMRI), and were followed with serial PSA to assess presence or absence of BCR. Genes differentially expressed in the tumor of patients with and without BCR were investigated using pathways analysis tools and were similarly explored in alternative datasets. Differential gene expression and predicted pathway activation were evaluated in relation to tumor response on mpMRI and tumor genomic profile. A novel TGF-ß gene signature was developed in the discovery dataset and applied to a validation dataset. Findings: Baseline MRI lesion volume and PTEN/TP53 status in prostate tumor biopsies correlated with the activation state of TGF-ß signaling measured using pathway analysis. All three measures correlated with the risk of BCR after definitive RT. A prostate cancer-specific TGF-ß signature discriminated between patients that experienced BCR vs. those that did not. The signature retained prognostic utility in an independent cohort. Interpretation: TGF-ß activity is a dominant feature of intermediate-to-unfavorable risk prostate tumors prone to biochemical failure after EBRT with ADT. TGF-ß activity may serve as a prognostic biomarker independent of existing risk factors and clinical decision-making criteria. Funding: This research was supported by the Prostate Cancer Foundation, the Department of Defense Congressionally Directed Medical Research Program, National Cancer Institute, and the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research.

10.
J Pers Med ; 13(3)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36983728

RESUMO

The recent integration of open-source data with machine learning models, especially in the medical field, has opened new doors to studying disease progression and/or regression. However, the ability to use medical data for machine learning approaches is limited by the specificity of data for a particular medical condition. In this context, the most recent technologies, like generative adversarial networks (GANs), are being looked upon as a potential way to generate high-quality synthetic data that preserve the clinical variability of a condition. However, despite some success, GAN model usage remains largely minimal when depicting the heterogeneity of a disease such as prostate cancer. Previous studies from our group members have focused on automating the quantitative multi-parametric magnetic resonance imaging (mpMRI) using habitat risk scoring (HRS) maps on the prostate cancer patients in the BLaStM trial. In the current study, we aimed to use the images from the BLaStM trial and other sources to train the GAN models, generate synthetic images, and validate their quality. In this context, we used T2-weighted prostate MRI images as training data for Single Natural Image GANs (SinGANs) to make a generative model. A deep learning semantic segmentation pipeline trained the model to segment the prostate boundary on 2D MRI slices. Synthetic images with a high-level segmentation boundary of the prostate were filtered and used in the quality control assessment by participating scientists with varying degrees of experience (more than ten years, one year, or no experience) to work with MRI images. Results showed that the most experienced participating group correctly identified conventional vs. synthetic images with 67% accuracy, the group with one year of experience correctly identified the images with 58% accuracy, and the group with no prior experience reached 50% accuracy. Nearly half (47%) of the synthetic images were mistakenly evaluated as conventional. Interestingly, in a blinded quality assessment, a board-certified radiologist did not significantly differentiate between conventional and synthetic images in the context of the mean quality of synthetic and conventional images. Furthermore, to validate the usability of the generated synthetic images from prostate cancer MRIs, we subjected these to anomaly detection along with the original images. Importantly, the success rate of anomaly detection for quality control-approved synthetic data in phase one corresponded to that of the conventional images. In sum, this study shows promise that high-quality synthetic images from MRIs can be generated using GANs. Such an AI model may contribute significantly to various clinical applications which involve supervised machine-learning approaches.

11.
Int J Surg Pathol ; 31(2): 184-189, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35521917

RESUMO

Background. Historically, intraductal carcinoma of the prostate (IDC-P) was postulated to be a retrograde spread of high-grade invasive prostate cancer. There is evidence that IDC-P can primarily originate in the prostatic ducts. The retrograde genesis has never been experimentally or clinically confirmed before. Methods. Biopsy proven intermediate or high-risk prostate cancer was orthotopically grafted in the prostate of severe combined immunodeficiency gamma mice. Cancer growth was monitored by serum PSA levels. The animals were sacrificed and grafted areas were histological examined. Results. Twenty-one of 23 mice survived and demonstrated rising serum PSA. In 10 of 21 animals, human prostate cancer was identified orthotopically. Except for one case where the human biopsy showed a Grade Group 2 prostate cancer and mouse graft was Grade Group 5, other 9 specimens showed comparable grades. One of the specimens demonstrated a cribriform invasive prostate cancer and adjacent IDC-P. Conclusion. These experimental data offer some evidence that invasive prostate cancer can demonstrate a retrograde spread in the prostatic ducts as IDC-P. Its ability to primarily arise in the ducts has been demonstrated in other studies. However, the issue which remains unresolved is in its most common presentation of IDC-P intermixed with high-grade invasive cancer if it is the former or the latter which came first. Possibly resolving this dilemma will shed some light on the existing controversies if IDC-P should or should not be graded when invasive cancer is present.


Assuntos
Carcinoma Intraductal não Infiltrante , Neoplasia Prostática Intraepitelial , Neoplasias da Próstata , Masculino , Humanos , Animais , Camundongos , Próstata/cirurgia , Próstata/patologia , Carcinoma Intraductal não Infiltrante/patologia , Neoplasia Prostática Intraepitelial/patologia , Antígeno Prostático Específico , Neoplasias da Próstata/patologia
12.
Sci Rep ; 12(1): 20136, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36418901

RESUMO

For prostate cancer (PCa) patients treated with definitive radiotherapy (RT), acute and late RT-related genitourinary (GU) toxicities adversely impact disease-specific quality of life. Early warning of potential RT toxicities can prompt interventions that may prevent or mitigate future adverse events. During intensity modulated RT (IMRT) of PCa, daily cone-beam computed tomography (CBCT) images are used to improve treatment accuracy through image guidance. This work investigated the performance of CBCT-based delta-radiomic features (DRF) models to predict acute and sub-acute International Prostate Symptom Scores (IPSS) and Common Terminology Criteria for Adverse Events (CTCAE) version 5 GU toxicity grades for 50 PCa patients treated with definitive RT. Delta-radiomics models were built using logistic regression, random forest for feature selection, and a 1000 iteration bootstrapping leave one analysis for cross validation. To our knowledge, no prior studies of PCa have used DRF models based on daily CBCT images. AUC of 0.83 for IPSS and greater than 0.7 for CTCAE grades were achieved as early as week 1 of treatment. DRF extracted from CBCT images showed promise for the development of models predictive of RT outcomes. Future studies will include using artificial intelligence and machine learning to expand CBCT sample sizes available for radiomics analysis.


Assuntos
Neoplasias da Próstata , Doenças Urogenitais , Masculino , Humanos , Próstata/diagnóstico por imagem , Projetos Piloto , Qualidade de Vida , Inteligência Artificial , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Tomografia Computadorizada de Feixe Cônico
13.
Cancers (Basel) ; 14(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36139635

RESUMO

We investigated the longitudinal changes in multiparametric MRI (mpMRI) (T2-weighted, Apparent Diffusion Coefficient (ADC), and Dynamic Contrast Enhanced (DCE-)MRI) of prostate cancer patients receiving Lattice Extreme Ablative Dose (LEAD) radiotherapy (RT) and the capability of their imaging features to predict RT outcome based on endpoint biopsies. Ninety-five mpMRI exams from 25 patients, acquired pre-RT and at 3-, 9-, and 24-months post-RT were analyzed. MRI/Ultrasound-fused biopsies were acquired pre- and at two-years post-RT (endpoint). Five regions of interest (ROIs) were analyzed: Gross tumor volume (GTV), normally-appearing tissue (NAT) and peritumoral volume in both peripheral (PZ) and transition (TZ) zones. Diffusion and perfusion radiomics features were extracted from mpMRI and compared before and after RT using two-tailed Student t-tests. Selected features at the four scan points and their differences (Δ radiomics) were used in multivariate logistic regression models to predict the endpoint biopsy positivity. Baseline ADC values were significantly different between GTV, NAT-PZ, and NAT-TZ (p-values < 0.005). Pharmaco-kinetic features changed significantly in the GTV at 3-month post-RT compared to baseline. Several radiomics features at baseline and three-months post-RT were significantly associated with endpoint biopsy positivity and were used to build models with high predictive power of this endpoint (AUC = 0.98 and 0.89, respectively). Our study characterized the RT-induced changes in perfusion and diffusion. Quantitative imaging features from mpMRI show promise as being predictive of endpoint biopsy positivity.

14.
Front Oncol ; 12: 854349, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35664789

RESUMO

Background/Hypothesis: MRI-guided online adaptive radiotherapy (MRI-g-OART) improves target coverage and organs-at-risk (OARs) sparing in radiation therapy (RT). For patients with locally advanced cervical cancer (LACC) undergoing RT, changes in bladder and rectal filling contribute to large inter-fraction target volume motion. We hypothesized that deep learning (DL) convolutional neural networks (CNN) can be trained to accurately segment gross tumor volume (GTV) and OARs both in planning and daily fractions' MRI scans. Materials/Methods: We utilized planning and daily treatment fraction setup (RT-Fr) MRIs from LACC patients, treated with stereotactic body RT to a dose of 45-54 Gy in 25 fractions. Nine structures were manually contoured. MASK R-CNN network was trained and tested under three scenarios: (i) Leave-one-out (LOO), using the planning images of N- 1 patients for training; (ii) the same network, tested on the RT-Fr MRIs of the "left-out" patient, (iii) including the planning MRI of the "left-out" patient as an additional training sample, and tested on RT-Fr MRIs. The network performance was evaluated using the Dice Similarity Coefficient (DSC) and Hausdorff distances. The association between the structures' volume and corresponding DSCs was investigated using Pearson's Correlation Coefficient, r. Results: MRIs from fifteen LACC patients were analyzed. In the LOO scenario the DSC for Rectum, Femur, and Bladder was >0.8, followed by the GTV, Uterus, Mesorectum and Parametrium (0.6-0.7). The results for Vagina and Sigmoid were suboptimal. The performance of the network was similar for most organs when tested on RT-Fr MRI. Including the planning MRI in the training did not improve the segmentation of the RT-Fr MRI. There was a significant correlation between the average organ volume and the corresponding DSC (r = 0.759, p = 0.018). Conclusion: We have established a robust workflow for training MASK R-CNN to automatically segment GTV and OARs in MRI-g-OART of LACC. Albeit the small number of patients in this pilot project, the network was trained to successfully identify several structures while challenges remain, especially in relatively small organs. With the increase of the LACC cases, the performance of the network will improve. A robust auto-contouring tool would improve workflow efficiency and patient tolerance of the OART process.

15.
Arch Pathol Lab Med ; 146(7): 833-839, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34669939

RESUMO

CONTEXT.­: Effect of tumor nodule (TN) location in the prostate on adverse radical prostatectomy (RP) outcomes is not well studied in contemporary cohorts. OBJECTIVE.­: To investigate the significance of TN location with respect to extraprostatic extension (EPE), seminal vesicle invasion (SVI), and positive surgical margin (SM+) in 1388 RPs. DESIGN.­: Each TN at RP was independently graded, staged, and volumetrically assessed. TNs with at least 80% of their volume occupying either the anterior or posterior part of the prostate were categorized accordingly and included in our study, while all other TNs were excluded. RESULTS.­: A total of 3570 separate TNs (median = 3 per RP; range = 1-7 per RP) were scored. There were 1320 of 3570 (37%) anterior TNs and 2250 of 3570 (63%) posterior TNs. Posterior TNs were more likely to be higher grade, and exhibit EPE (18% versus 9.4%) and SVI (4% versus 0.15%), all P < .001. Anterior TNs with EPE were more likely to exhibit SM+ than posterior TNs with EPE (62% versus 30.8%, P < .001). TN location, grade, and volume were significant factors associated with adverse RP outcomes in our univariable analysis. When we controlled for grade and tumor volume in a multivariable analysis using anterior TN location as a reference, posterior TN location was an independent predictor of EPE and SVI and was less likely to be associated with SM+ (odds ratio = 3.1, 81.5, and 0.7, respectively). CONCLUSIONS.­: These associations may be useful in preoperative surgical planning, particularly with respect to improving radiographic analysis of prostate cancer.


Assuntos
Próstata , Neoplasias da Próstata , Humanos , Masculino , Próstata/patologia , Prostatectomia/métodos , Neoplasias da Próstata/patologia , Estudos Retrospectivos , Glândulas Seminais/patologia , Carga Tumoral
16.
Prostate ; 81(12): 866-873, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34184782

RESUMO

BACKGROUND: Increasing percentages of Gleason pattern 4 (GP4%) in radical prostatectomy (RP) correlate with an increased likelihood of nonorgan-confined disease and earlier biochemical recurrence (BCR). However, there are no detailed RP studies assessing the impact of GP4% and corresponding tumor volume (TV) on extraprostatic extension (EPE), seminal vesicle (SV) invasion (SV+), and positive surgical margin (SM) status (SM+). METHODS: In 1301 consecutive RPs, we analyzed each tumor nodule (TN) for TV, Grade Group (GG), presence of focal versus nonfocal EPE, SV+ , and SM+. Using GG1 (GP4% = 0) TNs as a reference, we recorded GP4% for all GG2 or GG3 TNs. We performed a multivariable analysis (MVA) using a mixed effects logistic regression that tested significant variables for risk of EPE, SV+, and SM+, as well as a multinomial logistic regression model that tested significant variables for risks of nonorgan-confined disease (pT2+, pT3a, and pT3b) versus organ-confined disease (pT2). RESULTS: We identified 3231 discrete TNs ranging from 1 to 7 (median: 2.5) per RP. These included GG1 (n = 2115), GG2 (n = 818), GG3 (n = 274), and GG4 (n = 24) TNs. Increasing GP4% weakly paralleled increasing TV (tau = 0.07, p < .001). In MVA, increasing GP4% and TV predicted a greater likelihood of EPE (odds ratio [OR]: 1.03 and 4.41), SV+ (OR: 1.03 and 3.83), and SM+ (1.01, p = .01 and 2.83), all p < .001. Our multinomial logistic regression model demonstrated an association between GP4% and the risk of EPE (i.e., pT3a and pT3b disease), as well as an association between TV and risk of upstaging (all p < .001). CONCLUSIONS: Both GP4% and TV are independent predictors of adverse pathological stage and margin status at RP. However, the risks for adverse outcomes associated with GP4% are marginal, while those for TV are strong. The prognostic significance of GP4% on BCR-free survival has not been studied controlling for TV and other adverse RP findings. Whether adverse pathological stage and margin status associated with larger TV could decrease BCR-free survival to a greater extent than increasing RP GP4% remains to be studied.


Assuntos
Margens de Excisão , Prostatectomia/métodos , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Carga Tumoral/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Registros Eletrônicos de Saúde/tendências , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Recidiva Local de Neoplasia/patologia , Estadiamento de Neoplasias , Valor Preditivo dos Testes , Prostatectomia/tendências
17.
Front Oncol ; 11: 626100, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33763361

RESUMO

MRI is the standard modality to assess anatomy and response to treatment in brain and spine tumors given its superb anatomic soft tissue contrast (e.g., T1 and T2) and numerous additional intrinsic contrast mechanisms that can be used to investigate physiology (e.g., diffusion, perfusion, spectroscopy). As such, hybrid MRI and radiotherapy (RT) devices hold unique promise for Magnetic Resonance guided Radiation Therapy (MRgRT). In the brain, MRgRT provides daily visualizations of evolving tumors that are not seen with cone beam CT guidance and cannot be fully characterized with occasional standalone MRI scans. Significant evolving anatomic changes during radiotherapy can be observed in patients with glioblastoma during the 6-week fractionated MRIgRT course. In this review, a case of rapidly changing symptomatic tumor is demonstrated for possible therapy adaptation. For stereotactic body RT of the spine, MRgRT acquires clear isotropic images of tumor in relation to spinal cord, cerebral spinal fluid, and nearby moving organs at risk such as bowel. This visualization allows for setup reassurance and the possibility of adaptive radiotherapy based on anatomy in difficult cases. A review of the literature for MR relaxometry, diffusion, perfusion, and spectroscopy during RT is also presented. These techniques are known to correlate with physiologic changes in the tumor such as cellularity, necrosis, and metabolism, and serve as early biomarkers of chemotherapy and RT response correlating with patient survival. While physiologic tumor investigations during RT have been limited by the feasibility and cost of obtaining frequent standalone MRIs, MRIgRT systems have enabled daily and widespread physiologic measurements. We demonstrate an example case of a poorly responding tumor on the 0.35 T MRIgRT system with relaxometry and diffusion measured several times per week. Future studies must elucidate which changes in MR-based physiologic metrics and at which timepoints best predict patient outcomes. This will lead to early treatment intensification for tumors identified to have the worst physiologic responses during RT in efforts to improve glioblastoma survival.

18.
Skeletal Radiol ; 50(9): 1881-1887, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33733693

RESUMO

OBJECTIVE: Denosumab is an established targeted systemic therapy for treatment of giant cell tumor of bone (GCTB). We sought to determine whether treatment response could be quantified from radiomics analysis of radiographs taken longitudinally during treatment. MATERIALS AND METHODS: Pre- and post-treatment radiographs of 10 GCTB tumors from 10 patients demonstrating histologic response after treatment with denosumab were analyzed. Intensity- and texture-based radiomics features for each manually segmented tumor were calculated. Radiomics features were compared pre- and post-treatment in tumors. RESULTS: Mean intensity (p = 0.033) significantly increased while skewness (p = 0.028) significantly decreased after treatment. Post-treatment increases in fractal dimensions (p = 0.057) and abundance (p = 0.065) approached significance. A potential linear correlation in mean (p = 0.005; ΔMean = 0.022 * duration - 0.026) with treatment duration was observed. CONCLUSION: Radiomics analysis of plain radiographs quantifies time-dependent matrix mineralization and trabecular reconstitution that mark positive response of giant cell tumors of bone to denosumab.


Assuntos
Conservadores da Densidade Óssea , Neoplasias Ósseas , Tumor de Células Gigantes do Osso , Conservadores da Densidade Óssea/uso terapêutico , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/tratamento farmacológico , Denosumab/uso terapêutico , Tumor de Células Gigantes do Osso/diagnóstico por imagem , Tumor de Células Gigantes do Osso/tratamento farmacológico , Humanos , Radiografia
19.
Med Phys ; 48(5): 2386-2399, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33598943

RESUMO

PURPOSE: Radiomic features of cone-beam CT (CBCT) images have potential as biomarkers to predict treatment response and prognosis for patients of prostate cancer. Previous studies of radiomic feature analysis for prostate cancer were assessed in a variety of imaging modalities, including MRI, PET, and CT, but usually limited to a pretreatment setting. However, CBCT images may provide an opportunity to capture early morphological changes to the tumor during treatment that could lead to timely treatment adaptation. This work investigated the quality of CBCT-based radiomic features and their relationship with reconstruction methods applied to the CBCT projections and the preprocessing methods used in feature extraction. Moreover, CBCT features were correlated with planning CT (pCT) features to further assess the viability of CBCT radiomic features. METHODS: The quality of 42 CBCT-based radiomic features was assessed according to their repeatability and reproducibility. Repeatability was quantified by correlating radiomic features between 20 CBCT scans that also had repeated scans within 15 minutes. Reproducibility was quantified by correlating radiomic features between the planning CT (pCT) and the first fraction CBCT for 20 patients. Concordance correlation coefficients (CCC) of radiomic features were used to estimate the repeatability and reproducibility of radiomic features. The same patient dataset was assessed using different reconstruction methods applied to the CBCT projections. CBCT images were generated using 18 reconstruction methods using iterative (iCBCT) and standard (sCBCT) reconstructions, three convolution filters, and five noise suppression filters. Eighteen preprocessing settings were also considered. RESULTS: Overall, CBCT radiomic features were more repeatable than reproducible. Five radiomic features are repeatable in > 97% of the reconstruction and preprocessing methods, and come from the gray-level size zone matrix (GLSZM), neighborhood gray-tone difference matrix (NGTDM), and gray-level-run length matrix (GLRLM) radiomic feature classes. These radiomic features were reproducible in > 9.8% of the reconstruction and preprocessing methods. Noise suppression and convolution filter smoothing increased radiomic features repeatability, but decreased reproducibility. The top-repeatable iCBCT method (iCBCT-Sharp-VeryHigh) is more repeatable than the top-repeatable sCBCT method (sCBCT-Smooth) in 64% of the radiomic features. CONCLUSION: Methods for reconstruction and preprocessing that improve CBCT radiomic feature repeatability often decrease reproducibility. The best approach may be to use methods that strike a balance repeatability and reproducibility such as iCBCT-Sharp-VeryLow-1-Lloyd-256 that has 17 repeatable and eight reproducible radiomic features. Previous radiomic studies that only used pCT radiomic features have generated prognostic models of prostate cancer outcome. Since our study indicates that CBCT radiomic features correlated well with a subset of pCT radiomic features, one may expect CBCT radiomics to also generate prognostic models for prostate cancer.


Assuntos
Neoplasias da Próstata , Tomografia Computadorizada de Feixe Cônico Espiral , Tomografia Computadorizada de Feixe Cônico , Humanos , Imageamento por Ressonância Magnética , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Reprodutibilidade dos Testes
20.
BMC Med Inform Decis Mak ; 21(1): 374, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34972513

RESUMO

BACKGROUND: A shared decision-making model is preferred for engaging prostate cancer patients in treatment decisions. However, the process of assessing an individual's preferences and values is challenging and not formalized. The purpose of this study is to develop an automated decision aid for patient-centric treatment decision-making using decision analysis, preference thresholds and value elicitations to maximize the compatibility between a patient's treatment expectations and outcome. METHODS: A template for patient-centric medical decision-making was constructed. The inputs included prostate cancer risk group, pre-treatment health state, treatment alternatives (primarily focused on radiation in this model), side effects (erectile dysfunction, urinary incontinence, nocturia and bowel incontinence), and treatment success (5-year freedom from biochemical failure). A linear additive value function was used to combine the values for each attribute (side effects, success and the alternatives) into a value for all prospects. The patient-reported toxicity probabilities were derived from phase II and III trials. The probabilities are conditioned on the starting state for each of the side effects. Toxicity matrices for erectile dysfunction, urinary incontinence, nocturia and bowel incontinence were created for the treatment alternatives. Toxicity probability thresholds were obtained by identifying the patient's maximum acceptable threshold for each of the side effects. Results are represented as a visual. R and Rstudio were used to perform analyses, and R Shiny for application creation. RESULTS: We developed a web-based decision aid. Based on preliminary use of the application, every treatment alternative could be the best choice for a decision maker with a particular set of preferences. This result implies that no treatment has determinist dominance over the remaining treatments and that a preference-based approach can help patients through their decision-making process, potentially affecting compliance with treatment, tolerance of side effects and satisfaction with the decision. CONCLUSIONS: We present a unique patient-centric prostate cancer treatment decision aid that systematically assesses and incorporates a patient's preferences and values to rank treatment options by likelihood of achieving the preferred outcome. This application enables the practice and study of personalized medicine. This model can be expanded to include additional inputs, such as genomics, as well as competing, concurrent or sequential therapies.


Assuntos
Tomada de Decisão Compartilhada , Neoplasias da Próstata , Tomada de Decisões , Técnicas de Apoio para a Decisão , Genômica , Humanos , Masculino , Participação do Paciente , Medicina de Precisão , Neoplasias da Próstata/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA